Bulk Fields in Dilatonic and Self-Tuning Flat Domain Walls

نویسنده

  • Donam Youm
چکیده

We study the Kaluza-Klein zero modes of massless bulk fields with various spins in the background of dilatonic and self-tuning flat domain walls. We find that the zero modes of all the massless bulk fields in such domain wall backgrounds are normalizable, unlike those in the background of the non-dilatonic domain wall with infinite extra space of Randall and Sundrum. In particular, gravity in the bulk of dilatonic domain walls is effectively compactified to the Einstein gravity with vanishing cosmological constant and nonzero gravitational constant in one lower dimensions for any values of dilaton coupling parameter, provided the warp factor is chosen to decrease on both sides of the domain wall, in which case the tension of the domain wall is positive. However, unexpectedly, for the self-tuning flat domain walls, the cosmological constant of the zero mode effective gravity action in one lower dimensions does not vanish, indicating the need for additional ingredient or modification necessary in cancellation of the unexpected cosmological constant in the graviton zero mode effective action. CERN-TH/2000-058 February, 2000 E-mail: [email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localization of Bulk Form Fields on Dilatonic Domain Walls

We study the localization properties of bulk form potentials on dilatonic domain walls. We find that bulk form potentials of any ranks can be localized as form potentials of the same ranks or one lower ranks, for any values of the dilaton coupling parameter. For large enough values of the dilaton coupling parameter, bulk form potentials of any ranks can be localized as form potentials of both t...

متن کامل

Improving the ‘self-tuning’ mechanism with a Gauss-Bonnet term

The effects of higher order gravity terms on a dilatonic brane world model are discussed [1]. For a single positive tension flat 3-brane, and one infinite extra dimension, we present a particular class of solutions with finite 4-dimensional Planck scale and no naked singularities. A ‘self-tuning’ mechanism for relaxing the cosmological constant on the brane, without a drastic fine tuning of par...

متن کامل

Flat world of dilatonic domain walls.

We study dilatonic domain walls specific to superstring theory. Along with the matter fields and metric the dilaton also changes its value in the wall background. We found supersymmetric (extreme) solutions which in general interpolate between isolated superstring vacua with non-equal value of the matter potential; they correspond to the static, planar domain walls with flat metric in the strin...

متن کامل

Self-tuning flat domain walls in 5d gravity and string theory

We present Poincare invariant domain wall (“3-brane”) solutions to some 5-dimensional effective theories which can arise naturally in string theory. In particular, we find theories where Poincare invariant solutions exist for arbitrary values of the brane tension, for certain restricted forms of the bulk interactions. We describe examples in string theory where it would be natural for the quant...

متن کامل

Exact Solutions and the Cosmological Constant Problem in Dilatonic-Domain-Wall Higher-Curvature String Gravity

In this article we extend previous work by the authors, and elaborate further on the structure of the general solution to the graviton and dilaton equations of motion in brane world scenaria, in the context of five-dimensional effective actions with O(α′) higher-curvature corrections, compatible with bulk string-amplitude calculations. We consider (multi)brane scenaria, dividing the bulk space ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000